Search results for "Gene expression data"
showing 8 items of 8 documents
An Extension of the DgLARS Method to High-Dimensional Relative Risk Regression Models
2020
In recent years, clinical studies, where patients are routinely screened for many genomic features, are becoming more common. The general aim of such studies is to find genomic signatures useful for treatment decisions and the development of new treatments. However, genomic data are typically noisy and high dimensional, not rarely outstripping the number of patients included in the study. For this reason, sparse estimators are usually used in the study of high-dimensional survival data. In this paper, we propose an extension of the differential geometric least angle regression method to high-dimensional relative risk regression models.
Regularized Regression Incorporating Network Information: Simultaneous Estimation of Covariate Coefficients and Connection Signs
2014
We develop an algorithm that incorporates network information into regression settings. It simultaneously estimates the covariate coefficients and the signs of the network connections (i.e. whether the connections are of an activating or of a repressing type). For the coefficient estimation steps an additional penalty is set on top of the lasso penalty, similarly to Li and Li (2008). We develop a fast implementation for the new method based on coordinate descent. Furthermore, we show how the new methods can be applied to time-to-event data. The new method yields good results in simulation studies concerning sensitivity and specificity of non-zero covariate coefficients, estimation of networ…
Sparse relative risk survival modelling
2016
Cancer survival is thought to closed linked to the genimic constitution of the tumour. Discovering such signatures will be useful in the diagnosis of the patient and may be used for treatment decisions and perhaps even the development of new treatments. However, genomic data are typically noisy and high-dimensional, often outstripping the number included in the study. Regularized survival models have been proposed to deal with such scenary. These methods typically induce sparsity by means of a coincidental match of the geometry of the convex likelihood and (near) non-convex regularizer.
Sparse relative risk regression models
2020
Summary Clinical studies where patients are routinely screened for many genomic features are becoming more routine. In principle, this holds the promise of being able to find genomic signatures for a particular disease. In particular, cancer survival is thought to be closely linked to the genomic constitution of the tumor. Discovering such signatures will be useful in the diagnosis of the patient, may be used for treatment decisions and, perhaps, even the development of new treatments. However, genomic data are typically noisy and high-dimensional, not rarely outstripping the number of patients included in the study. Regularized survival models have been proposed to deal with such scenarios…
Detection of Vasodilators From Herbal Components by a Transcriptome-Based Functional Gene Module Reference Approach
2019
Vasodilatation is one of the key therapeutic strategies for the treatment of various cardiovascular diseases with high blood pressure. Therefore, development of drugs assisting blood vessel dilation is promising. It has been proved that many drugs display definite vasorelaxant effects. However, there are very few studies that systemically explore the effective vasodilators. In this work, we build a transcriptome-based functional gene module reference approach for systematic pursuit of agents with vasorelaxant effects. We firstly curate two functional gene modules that specifically involved in positive and negative regulation of vascular diameter based on the known gene functional interactio…
Pathway network inference from gene expression data
2014
[EN] Background: The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results: We presen…
GenClust: A genetic algorithm for clustering gene expression data
2005
Abstract Background Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering. Results GenClust is a new genetic algorithm for clustering gene expression data. It has two key features: (a) a novel coding of the search space that is simple, …
Discriminating Graph Pattern Miningfrom Gene Expression Data
2016
We consider the problem of mining gene expression data in order to single out interesting features characterizing healthy/unhealthy samples of an input dataset. We present an approach based on a network model of the input gene expression data, where there is a labelled graph for each sample. To the best of our knowledge, this is the first attempt to build a different graph for each sample and, then, to have a database of graphs for representing a sample set. Our main goal is that of singling out interesting differences between healthy and unhealthy samples, through the extraction of "discriminative patterns" among graphs belonging to the two different sample sets. Differently from the other…